Технические науки

Научные открытия, которые привели нас в космос: Ракеты

30 сентября 2017 0

nasa, космос, ракета

Источник: pixabay.com

В одном из прошлых материалов мы разбирали важнейший компонент полета в глубокий космос – гравитационный маневр. Но в силу своей сложности такой проект, как космический полет, всегда можно разложить на большой ряд технологий и изобретений, которые делают его возможным. Таблица Менделеева, линейная алгебра, расчеты Циолковского, сопромат и еще целые области науки внесли свою лепту в первый, да и все последующие полеты человека в космос. В сегодняшней статье мы расскажем, как и кому пришла в голову идея космической ракеты, из чего она состоит и как из чертежей и расчетов ракеты превратились в средство доставки людей и грузов в космос.


 

Краткая история ракет

Общий принцип реактивного полета, который лег в основу всех ракет, прост — от тела отделяется какая-то часть, приводящая все остальное в движение.

Кто первым реализовал этот принцип – неизвестно, но различные догадки и домыслы доводят генеалогию ракетостроения аж до Архимеда. Доподлинно о первых подобных изобретениях известно, что ими активно пользовались китайцы, которые заряжали их порохом и за счет взрыва запускали в небо. Таким образом они создали первые твердотопливные ракеты. Большой интерес к ракетам появился у европейских правительств в начале

Второй ракетный бум

Ракеты ждали своего часа и дождались: в 1920-х годах начался второй ракетный бум, и связан он в первую очередь с двумя именами.

Константин Эдуардович Циолковский — ученый-самоучка из Рязанской губернии,  невзирая на трудности и препятствия, сам дошел до многих открытий, без которых невозможно было бы даже говорить о космосе. Идея использования жидкого топлива, формула Циолковского, которая рассчитывает необходимую для полета скорость, исходя из соотношения конечной и начальной масс, многоступенчатая ракета — все это его заслуга. Во многом под влиянием его трудов создавалось и оформлялось отечественное ракетостроение. В Советском Союзе начали стихийно возникать общества и кружки по изучению реактивного движения, в числе которых ГИРД — группа изучения реактивного движения, а в 1933 году под патронажем властей появился Реактивный институт.

Циолковский

Константин Эдуардович Циолковский.
Источник: Wikimedia.org

Второй герой ракетной гонки — немецкий физик Вернер фон Браун. Браун имел отличное образование и живой ум, а после знакомства с другим светилом мирового ракетостроения, Генрихом Обертом, он решил приложить все свои силы к созданию и усовершенствованию ракет. В годы Второй Мировой фон Браун фактически стал отцом «оружия возмездия» Рейха — ракеты «Фау-2», которую немцы начали применять на поле боя в 1944 году. «Крылатый ужас», как называли её в прессе, принес разрушение многим английским городам, но, к счастью, на тот момент крах нацизма был уже делом времени. Вернер фон Браун вместе со своим братом решил сдаться в плен к американцам, и, как показала история, это был счастливый билет не только и не столько для ученых, сколько для самих американцев. С 1955 года Браун работает на американское правительство, и его изобретения ложатся в основу космической программы США.

Но вернемся в 1930-е. Советское правительство по достоинству оценило рвение энтузиастов на пути к космосу и решило употребить его в своих интересах. В годы войны себя отлично показала «Катюша» — система залпового огня, которая стреляла реактивными ракетами. Это было во многом инновационное оружие: «Катюша» на базе легкого грузовика «Студебеккер» приезжала, разворачивалась, обстреливала сектор и уезжала, не давая немцам опомниться.

Окончание войны подкинуло нашему руководству новую задачу: американцы продемонстрировали миру всю мощь ядерной бомбы, и стало совершенно очевидно, что на статус сверхдержавы может претендовать только тот, у кого есть нечто похожее. Но здесь была проблема. Дело в том, что, помимо самой бомбы, нам нужны были средства доставки, которые бы смогли обойти ПВО США. Самолеты для этого не годились. И СССР решил сделать ставку на ракеты.

Константин Эдуардович Циолковский умер в 1935 году, но ему на смену пришло целое поколение молодых ученых, которое и отправило человека в космос. Среди этих ученых был Сергей Павлович Королев, которому суждено было стать «козырем» Советов в космической гонке.

СССР принялся за создание своей межконтинентальной ракеты со всем усердием: были организованы институты, собраны лучшие ученые, в подмосковных Подлипках создается НИИ по ракетному вооружению, и работа кипит вовсю.

Только колоссальное напряжение сил, средств и умов позволило Советскому Союзу в кратчайшие сроки построить свою ракету, которую назвали Р-7. Именно её модификации вывели в космос «Спутник» и Юрия Гагарина, именно Сергей Королев и его соратники дали старт космической эре человечества. Но из чего состоит космическая ракета?

Конструкция ракеты

ракета, схема ракеты

Схема двухступенчатой ракеты.
Источник: Wikimedia.org

Любая конструкция, которую мы запускаем в космос, состоит условно из двух частей: космического корабля и ракеты-носителя. Из-за земного притяжения, сопротивления воздуха и плотности атмосферы основная масса конструкции заключается как раз в ракете-носителе, которая должна вытягивать полезную нагрузку на орбиту.

С самого начала освоения космоса люди поняли, что нужно делать многоступенчатые ракеты. Таким образом, как только у одной ступени заканчивалось топливо, она отделялась от всей конструкции и облегчала дальнейший полет. Схем расположения ступеней много: есть продольные, поперечные, смешанные. Есть также разгонные ступени, которые включаются на последнем этапе, уже в космосе, и выводят на орбиту космический аппарат.

Каждая ступень представляет из себя двигатель с топливным баком и необходимые для крепления, защиты и безопасности устройства.

В топливных баках содержатся два компонента — жидкость и окислитель, если мы говорим о жидкостных двигателях. С помощью насоса топливо и окислитель поступают в камеру сгорания, там смешиваются, поджигаются и через сопло выбрасывают реактивную струю. Смесь топлива и окислителя в таком случае становится рабочим телом системы — расходуя его, система движется в противоположном направлении от реактивной струи. Все по законам Ньютона.

На ракетных двигателях РД-107, РД-108 и РД-109 в качестве топлива использовался керосин, а в качестве окислителя — жидкий кислород. К примеру, на современном «Протоне» для тех же нужд используют гептил и N2O4.

Технология многоступенчатых ракет на жидком топливе оказалась настолько надежной и универсальной, что с их помощью летают в космос до сих пор. Более того, этот способ оказался универсальным — ничего другого мы пока не придумали. Первый искусственный спутник Земли летал на двухступенчатой ракете на керосине, Falcon9 Илона Маска, хоть они и научились возвращать ступени, идут все по тому же, известному пути — две ступени и керосин.

Очевидно, что в ближайшие годы нам не стоит ожидать отказа от ракет, как основного способа космических путешествий. Квантовые телепорты, антигравитация и прочее — пока только хорошие названия для глав фантастической книги, страницы которой придется писать нашим потомкам. А пока заправляем ракеты и летим в небо.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Рассказать друзьям

0 Комментариев

Подписаться на рассылку

Комментарии

Войти с помощью 

Присоединяйтесь к нам в социальных сетях

В наших группах вы можете узнать много нового и интересного, а так же - принять участие в опросах и конкурсах

Присоединиться
Присоединиться